Spatially Nonuniform Heating and the Nonlinear Transient Response of Elastomeric Photomechanical Actuators

نویسندگان

  • Robert W. Cohn
  • Balaji Panchapakesan
  • Delbert Tesar
چکیده

Recently various nanomaterials, such as carbon nanotubes and graphene, have been added to rubbery elastomers, such as poly dimethyl siloxane (PDMS), to enable generation of stress and displacement in response to remote illumination. While the response is primarily due to heat-induced generation of stress; i.e., the thermoelastic effect in rubbers, illuminated samples have shown unexpected deviations between the transient waveforms of sample temperature and induced stress. In this report we have created a new and simple lumped element model to explain the stress behavior of these photomechanical nanocomposites. The model consists of two parameters that describe the spatially averaged steady state temperature rise due to optical absorption of the structure (typically a long strip of pre-strained elastomer) and the spatially averaged convective cooling rate of the strip, together with a time-varying function that effectively represents the temperature distribution and thermal convection along the length of the strip. The model is used to compare two actuators that each have a thin embedded layer of carbon nanotubes, in which the one film consists of randomly aligned nanotubes and the other has a much more ordered alignment. The model not only fits both transient responses, but the differences between the parameters suggests that the ordered film conducts heat across the strip more rapidly than the disordered film, leading to it more rapidly reaching the steady state level of maximum stress. This model should be helpful in future experimental studies that work to observe, delineate and identify possible nanoscale and molecular contributions to photomechanical stress.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photomechanical responses of carbon nanotube/polymer actuators

Recent studies have investigated the photomechanical properties of carbon nanotubes which can be utilized to construct optical actuators. In this paper we compare the photomechanical response from single-wall and multi-wall carbon nanotube/polymer systems in multilayer and nanocomposite actuator constructions. Incorporating polymers in the actuators, single-wall and multi-wall nanotubes show si...

متن کامل

Nonlinear Analysis of a Flexible Beam Actuated by a Couple of Active SMA Wire Actuators

There are two different ways of using SMA wires as actuators for shape control of flexible structures; which can be either embedded within the composite laminate or externally attached to the structure. Since the actuator can be placed at different offset distances from the beam, external actuators produce more bending moment and, consequently, considerable shape changes with the same magnitude...

متن کامل

Spice Compatible Model for Multiple Coupled Nonuniform Transmission Lines Application in Transient Analysis of VLSI Circuits

An SPICE compatible model for multiple coupled nonuniform lossless transmission lines (TL's) is presented. The method of the modeling is based on the steplines approximation of the nonuniform TLs and quasi-TEM assumptions. Using steplines approximation the system of coupled nonuniform TLs is subdivided into arbitrary large number of coupled uniform lines (steplines) with different characteristi...

متن کامل

Finite Element Analysis of Ultrasonic Processing of a Polymer- Matrix Composite

Viscoelastic heating induced by ultrasonic loading is an attractive method of consolidating polymer-matrix composites. An ultrasonically oscillating loading horn is applied to a small region at the laminate surface, which produces a spatially nonuniform strain energy field within the material. A fraction of this strain energy is dissipated during each ultrasonic loading cycle depending on the t...

متن کامل

Dynamics Analysis of the Steady and Transient States of a Nonlinear Piezoelectric Beam by a Finite Element Method

This paper presents a finite element formulation for the dynamics analysis of the steady and transient states of a nonlinear piezoelectric beam. A piezoelectric beam with damping is studied under harmonic excitation. A numerical method is used for this analysis. In the paper, the central difference formula of four order is used and compared with the central difference formula of two order in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016